Using Disconnected Tables in Power Pivot/Tabular Data Models to Solve Business Problems

Matt Allington Excelerator Bl

SQL Saturday #582, Melbourne 11th February 2017

Matt Allington Excelerator Bl

- 25 year career at Coca-Cola working in both Sales and Information Technology
- Now running a Power BI consultancy in Sydney Australia
 - Self Service BI Consulting
 - Power Pivot/Power Query/Power BI Training
 - Blogger <u>http://xbi.com.au/blog</u>
- Author of the book "Learn to Write DAX"
- Microsoft MVP

Overview of Today's Session

Tables do not have to be connected in the Data Model to add value

- Objective
 - Broaden the awareness of using DAX and Power Pivot with disconnected tables.
- 4 Techniques
 - User Input Slicers.
 - Switch Measure Slicers.
 - Banding.
 - Latest Survey Result.

User Input Slicers

Purpose: To accept user input that can then be used in calculations in the data model

Process Steps

- Create list of values in a table.
- 2. Harvest the selection made by the user.
- 3. Write Measures that use the harvested value.
- 4. Build value adding interactive tools and what if tables.

Select Increase 🛛 🎉		Developeda (Total Sales	Total Cost	Total	New Sell	New	Incremental
0.00%	0.25%	Row Labels	630.360	614 721	Margin %	value coo oco	Margin %	Margin
13		BIKE Racks	\$39,360	\$14,721	62.6%	\$39,300	62.6%	
0.50%	1.00%	Bike Stands	\$39,591	\$14,807	62.6%	\$39,591	62.6%	
2.00% 3.00%		Bottles and Cages	\$56,798	\$21,243	62.6%	\$56,798	62.6%	
		Caps	\$19,688	\$15,160	23.0%	\$19,688	23.0%	
4.00%	5.00%	Cleaners	\$7,219	\$2,700	62.6%	\$7,219	62.6%	
6.00%	7.00%	Fenders	\$46,620	\$17,436	62.6%	\$46,620	62.6%	
		Gloves	\$35,021	\$13,098	62.6%	\$35,021	62.6%	
8.00%	9.00%	Helmets	\$225,336	\$84,276	62.6%	\$225,336	62.6%	
		Hydration Packs	\$40,308	\$15,075	62.6%	\$40,308	62.6%	
		Jerseys	\$172,951	\$133,172	23.0%	\$172,951	23.0%	
		Mountain Bikes	\$9,952,760	\$5,439,135	45.4%	\$9,952,760	45.4%	
		Road Bikes	\$14,520,584	\$8,983,284	38.1%	\$14,520,584	38.1%	
		Shorts	\$71,320	\$26,674	62.6%	\$71,320	62.6%	
		Socks	\$5,106	\$1,910	62.6%	\$5,106	62.6%	
		Tires and Tubes	\$245,529	\$91,829	62.6%	\$245,529	62.6%	
		Touring Bikes	\$3,844,801	\$2,389,928	37.8%	\$3,844,801	37.8%	
		Vests	\$35,687	\$13,347	62.6%	\$35,687	62.6%	
		Grand Total	\$29,358,677	\$17,277,794	41.1%	\$29,358,677	41.1%	2 - 1 - E -

Switch Measure Slicers

Purpose: To accept user input to change a pivot table or chart

Process Steps

- 1. Create list of measures in a table for each slicer.
- 2. Harvest the selection from the user.
- 3. Write a switch measure that 'morphs' from one measure to another.
- 4. Use the 'morphing' measures in your charts and reports.

More Info

Banding

Purpose: Group data into manageable "bands" for analysis

Process Steps

- 1. Create list bands (age ranges) in a table.
- 2. Write a Calculated Column that categorises each customer into one of the bands.
- 3. Use the Calculated Column in your analysis.

Too much detail for analysis

% of All Product Purchases Column Labels 💌											
Age of Customer	-	Mountain Bikes	Road Bikes	Touring Bikes	Grand Total						
35		22.5%	69.7%	7.7%	100.0%						
36		29.4%	65.5%	5.2%	100.0%						
37		30.4%	60.9%	8.8%	100.0%						
38		28.4%	65.7%	5.9%	100.0%						
39		38.1%	46.6%	15.3%	100.0%						
40		36.6%	51.6%	11.8%	100.0%						
41		34.6%	52.6%	12.8%	100.0%						
42		30.8%	58.1%	11.1%	100.0%						
43		32.4%	52.6%	14.9%	100.0%						
44		34.3%	50.3%	15.4%	100.0%						
45		31.3%	52.6%	16.1%	100.0%						
46		32.3%	53.8%	14.0%	100.0%						
47		32.7%	51.9%	15.4%	100.0%						
48		30.9%	53.4%	15.6%	100.0%						
49		35.3%	47.7%	17.0%	100.0%						
50		43.4%	41.1%	15.5%	100.0%						
51		39.3%	50.4%	10.4%	100.0%						

Further Reading:

http://www.daxpatterns.com/static-segmentation/ http://www.daxpatterns.com/dynamic-segmentation/

Latest Survey Result

Purpose: Access the "last valid record" from a set of data regardless of date

Process Steps

More Info

- 1. Build your data model as normal
- 2. Remove the relationship to the Calendar table
- 3. Write DAX measures to replace the relationship

Standard filter propagation is a problem here

Questions?

http://xbi.com.au/blog http://xbi.com.au/learndax

A practical guide to learning Power Pivot for Excel and Power BI =LASTDATE () =SUM() =MAXX() CALE =DISTINCTCOUNT() =FILTER() =HASONEVALUE() =CALCULATE() =SUMX() =DIVIDE()

Learn to Write DAX

Matt Allington